教材总结06高中化学选修3物质结构与

白癜风需要忌口吗 http://m.39.net/pf/a_6985661.html

高中化学选修3知识点总结

二、复习要点

1、原子结构

2、元素周期表和元素周期律

3、共价键

4、分子的空间构型

5、分子的性质

6、晶体的结构和性质

(一)原子结构

1、能层和能级

(1)能层和能级的划分

①在同一个原子中,离核越近能层能量越低。

②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。

③任一能层,能级数等于能层序数。

④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。

⑤能层不同能级相同,所容纳的最多电子数相同。

(2)能层、能级、原子轨道之间的关系

每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理

(1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。

(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f<(n-1)d<np

(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。

根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。

(5)基态和激发态

①基态:最低能量状态。处于最低能量状态的原子称为基态原子。

②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。

③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。

3、电子云与原子轨道

(1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

(2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,np能级各有3个原子轨道,相互垂直(用px、py、pz表示);nd能级各有5个原子轨道;nf能级各有7个原子轨道。

4、核外电子排布规律

(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。

(2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。

(3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。

(4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。

能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。

电子数

(5)(n-1)d能级上电子数等于10时,副族元素的族序数=ns能级电子数

(二)元素周期表和元素周期律

1、元素周期表的结构

元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。

(1)原子的电子层构型和周期的划分

周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。

(2)原子的电子构型和族的划分

族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。

(3)原子的电子构型和元素的分区

按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。

2、元素周期律

元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。元素性质的周期性来源于原子外电子层构型的周期性。

(1)同周期、同主族元素性质的递变规律

同周期(左右)

同主族(上下)

原子结构

核电荷数

逐渐增大

增大

能层(电子层)数

相同

增多

原子半径

逐渐减小

逐渐增大

元素性质

化合价

最高正价由+1+7负价数=(8—族序数)

最高正价和负价数均相同,最高正价数=族序数

元素的金属性和非金属性

金属性逐渐减弱,非金属性逐渐增强

金属性逐渐增强,非金属性逐渐减弱

第一电离能

呈增大趋势(注意反常点:ⅡA族和ⅢA族、ⅤA族和ⅥA族)

逐渐减小

电负性

逐渐增大

逐渐减小

(2)微粒半径的比较方法

①同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。

②同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。如:NaMgAlSiPSCl

③同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。如:LiNaKRbCs,F-Cl-Br-I-

④同电子层结构(阳离子的电子层结构与上一周期0族元素原子具有相同的电子层结构,阴离子与同周期0族元素原子具有相同的电子层结构):随核电荷数增大,微粒半径依次减小。如:F-Na+Mg2+Al3+

(3)元素金属性强弱的判断方法

本质

原子越易失电子,金属性越强。

1.在金属活动顺序表中越靠前,金属性越强

2.单质与水或非氧化性酸反应越剧烈,金属性越强

3.单质还原性越强或离子氧化性越弱,金属性越强(电解中在阴极上得电子的先后)

4.最高价氧化物对应水化物的碱性越强,金属性越强

5.若xn++yx+ym+则y比x金属性强

6.原电池反应中负极的金属性强

7.与同种氧化剂反应,先反应的金属性强

8.失去相同数目的电子,吸收能量少的金属性强

(4)非金属性强弱的判断方法

本质

原子越易得电子,非金属性越强

1.与H2化合越易,气态氢化物越稳定,非金属性越强

2.单质氧化性越强,阴离子还原性越弱,非金属性越强(电解中在阳极上得电子的先后)

3.最高价氧化物的水化物酸性越强,非金属性越强

4.An-+BBm-+A则B比A非金属性强

5.与同种还原剂反应,先反应的非金属性强

6.得到相同数目的电子,放出能量多的非金属性强

(三)共价键

1、共价键的成键本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。

2、共价键类型:

(1)σ键和π键

σ键

π键

成键方向

沿键轴方向“头碰头”

平行或“肩并肩”

电子云形状

轴对称

镜像对称

牢固程度

强度大,不易断裂

强度小,易断裂

成键判断规律

单键是σ键;双键有一个是σ键,另一个是π键;三键中一个是σ键,另两个为π键。

(2)极性键和非极性键

非极性键

极性键

定义

由同种元素的原子形成的共价键,共用电子对不发生偏移

由不同种元素的原子形成的共价键,共用电子对发生偏移

原子吸引电子能力

相同

不同

共用电子对位置

不偏向任何一方

偏向吸引电子能力强的原子一方

成键原子的电性判断依据

不显电性

显电性

举例

单质分子(如H2、Cl2)和某些化合物(如Na2O2、H2O2)中含有非极性键

气态氢化物,非金属氧化物、酸根和氢氧根中都含有极性键

(3)配位键:一类特殊的共价键,一个原子提供空轨道,另一个原子提供一对电子所形成的共价键。

①配位化合物:金属离子与配位体之间通过配位键形成的化合物。如:Cu(H2O)4SO4、Cu(NH3)4(OH)2、Ag(NH3)2OH、Fe(SCN)3等。

②配位化合物的组成:

3、共价键的三个键参数

概念

对分子的影响

键长

分子中两个成键原子核间距离(米)

键长越短,化学键越强,形成的分子越稳定

键能

对于气态双原子分子AB,拆开1molA-B键所需的能量

键能越大,化学键越强,越牢固,形成的分子越稳定

键角

键与键之间的夹角

键角决定分子空间构型

(1)键长、键能决定共价键的强弱和分子的稳定性,键角决定分子空间构型和分子的极性。

(2)键能与反应热:反应热=生成物键能总和-反应物键能总和

(四)分子的空间构型

1、等电子原理

原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。

(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。(等电子的推断常用转换法,如CO2=CO+O=N2+O=N2O=N2+N—=N3—或SO2=O+O2=O3=N—+O2=NO2—)

(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。

2、价电子互斥理论:

(1)价电子互斥理论的基本要点:ABn型分子(离子)中中心原子A周围的价电子对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。

(2)ABn型分子价层电子对的计算方法:

①对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5中

②O、S作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;

③离子的价电子对数计算

如:NH4+:;SO42-:

3、杂化轨道理论

(1)杂化轨道理论的基本要点:

①能量相近的原子轨道才能参与杂化。

②杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成σ键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。

③杂化轨道能量相同,成分相同,如:每个sp3杂化轨道占有1个s轨道、3个p轨道。

④杂化轨道总数等于参与杂化的原子轨道数目之和。

(2)s、p杂化轨道和简单分子几何构型的关系

杂化类型

sp

sp2

sp3

sp3不等性杂化

轨道夹角

o

o

o28′

中心原子位置

ⅡA,ⅡB

ⅢA

ⅣA

ⅤA

ⅥA

ⅦA

中心原子孤对电子数

0

0

0

1

2

3

分子几何构型

直线形

平面三角形

正四面体形

三角锥形

V字形

直线形

实例

BeCl2、HgCl2

BF3

CH4、SiCl4

NH3、PH3

H2O、H2S

HCl

(3)杂化轨道的应用范围:杂化轨道只应用于形成σ键或者用来容纳未参加成键的孤对电子。

(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有1个叁键,则其中有2个π键,用去了2个p轨道,形成的是sp杂化;如果有1个双键则其中有1个π键,形成的是sp2杂化;如果全部是单键,则形成的是sp3杂化。

4、分子空间构型、中心原子杂化类型和分子极性的关系

分子(离子)

中心原子价电子对

杂化类型

VSEPR模型

分子空间构型

键角

分子的极性

CO2

2

sp

直线

直线形

o

SO2

3

sp2

平面三角

V字形

H2O、OF2、

3

sp3

平面三角

V字形

——

HCN

2

sp

直线

直线形

o

NH3

4

sp3

正四面体

三角锥形

o18′

BF3、SO3

3

sp2

平面三角

平面三角形

o

H3O+

4

sp3

正四面体

三角锥形

o18′

——

CH4、CCl4

4

sp3

正四面体

正四面体形

o28′

NH4+

4

sp3

正四面体

正四面体形

o28′

HCHO、COCl2

3

sp2

平面三角

平面三角形

——

(五)分子的性质

1、分子间作用力(范德华力和氢键)

(1)分子间作用力和化学键的比较

化学键

分子间作用力

概念

相邻原子间强烈的相互作用

分子间微弱的相互作用

范围

分子内或某些晶体内

分子间

能量

键能一般为~kJ·mol-1

约几到几十kJ·mol-1

性质影响

主要影响物质的化学性质(稳定性)

主要影响物质的物理性质(熔沸点)

(2)范德华力与氢键的比较

范德华力

氢键

概念

物质分子间存在的微弱相互作用

分子间(内)电负性较大的成键原子通过H原子而形成的静电作用

存在范围

分子间

分子中含有与H原子相结合的原子半径小、电负性大、有孤对电子的F、O、N原子

强度比较

比化学键弱得多

比化学键弱得多,比范德华力稍强

影响因素

随分子极性和相对分子质量的增大而增大

性质影响

随范德华力的增大,物质的熔沸点升高、溶解度增大

分子间氢键使物质熔沸点升高硬度增大、水中溶解度增大;分子内氢键使物质熔沸点降低、硬度减小

2、极性分子和非极性分子

(1)极性分子和非极性分子

1非极性分子:从整个分子看,分子里电荷的分布是对称的。如:①只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;②只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;③极性键非极性键都有的:CH2=CH2、CH≡CH、。

2极性分子:整个分子电荷分布不对称。如:①不同元素的双原子分子如:HCl,HF等。②折线型分子,如H2O、H2S等。③三角锥形分子如NH3等。

(2)共价键的极性和分子极性的关系:

两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如HCl、H2S、H2O2等。

(3)分子极性的判断方法

①单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如He、Ne等。

②双原子分子:若含极性键,就是极性分子,如HCl、HBr等;若含非极性键,就是非极性分子,如O2、I2等。

③以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如NH3、SO2等。

④根据ABn的中心原子A的最外层价电子是否全部参与形成了同样的共价键。(或A是否达最高价)

(4)相似相溶原理

①相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。

②相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。

③如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。

3、有机物分子的手性和无机含氧酸的酸性

(1)手性分子

①手性分子:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。含有手性异构体的分子叫做手性分子。

②手性分子的判断方法:判断一种有机物是否具有手性异构体,可以看其含有的碳原子是否连有四个不同的原子或原子团,符合上述条件的碳原子叫做手性碳原子。手性碳原子必须是饱和碳原子,饱和碳原子所连有的原子和原子团必须不同。

(2)无机含氧酸分子的酸性

①酸的元数=酸中羟基上的氢原子数,不一定等于酸中的氢原子数(有的酸中有些氢原子不是连在氧原子上)

②含氧酸可表示为:(HO)mROn,酸的强度与酸中的非羟基氧原子数n有关,n越大,酸性越强。

n=0弱酸n=1中强酸n=2强酸n=3超强酸

(六)晶体的结构和性质

类型

比较

离子晶体

原子晶体

分子晶体

金属晶体

构成晶体微粒

阴、阳离子

原子

分子

金属阳离子、自由电子

形成晶体作用力

离子键

共价键

范德华力

微粒间的静电作用

物理性质

熔沸点

较高

很高

有高、有低

硬度

硬而脆

有高、有低

导电性

不良(熔融或水溶液中导电)

绝缘、半导体

不良

良导体

传热性

不良

不良

不良

延展性

不良

不良

不良

溶解性

易溶于极性溶剂,难溶于有机溶剂

不溶于任何溶剂

极性分子易溶于极性溶剂;非极性分子易溶于非极性溶剂中

一般不溶于溶剂,钠等可

与水、醇类、酸类反应

典型实例

NaOH、NaCl

金刚石

P4、干冰、硫

钠、铝、铁

1、四大晶体的比较

2、典型晶体的结构特征

(1)NaCl

属于离子晶体。晶胞中每个Na+周围吸引着6个Cl-,这些Cl-构成的几何图形是正八面体,每个Cl-周围吸引着6个Na+,Na+、Cl-个数比为1:1,每个Na+与12个Na+等距离相邻,每个氯化钠晶胞含有4个Na+和4个Cl-。

(2)CsCl

属于离子晶体。晶胞中每个Cl—(或Cs+)周围与之最接近且距离相等的Cs+(或Cl—)共有8个,这几个Cs+(或Cl—)在空间构成的几何构型为立方体,在每个Cs+周围距离相等且最近的Cs+共有6个,这几个Cs+在空间构成的几何构型为正八面体,一个氯化铯晶胞含有1个Cs+和1个Cl—。

(3)金刚石(空间网状结构)

属于原子晶体。晶体中每个C原子和4个C原子形成4个共价键,成为正四面体结构,C原子与碳碳键个数比为1:2,最小环由6个C原子组成,每个C原子被12个最小环所共用;每个最小环含有1/2个C原子。

(4)SiO2

属于原子晶体。晶体中每个Si原子周围吸引着4个O原子,每个O原子周围吸引着2个Si原子,Si、O原子个数比为1:2,Si原子与Si—O键个数比为1:4,O原子与Si—O键个数比为1:2,最小环由12个原子组成。

(5)干冰

属于分子晶体。晶胞中每个CO2分子周围最近且等距离的CO2有12个。1个晶胞中含有4个CO2。

(6)石墨

属于过渡性晶体。是分层的平面网状结构,层内C原子以共价键与周围的3个C原子结合,层间为范德华力。晶体中每个C原子被3个六边形共用,平均每个环占有2个碳原子。晶体中碳原子数、碳环数和碳碳单键数之比为2:3。

(7)金属晶体

金属Po(钋)中金属原子堆积方式是简单立方堆积,原子的配位数为6,一个晶胞中含有1个原子。金属Na、K、Cr、Mo(钼)、W等中金属原子堆积方式是体心立方堆积,原子的配位数为8,一个晶胞中含有2个原子。金属Mg、Zn、Ti等中金属原子堆积方式是六方堆积,原子的配位数为12,一个晶胞中含有2个原子。金属Au、Ag、Cu、Al等中金属原子堆积方式是面心立方堆积,原子的配位数为12,一个晶胞中含有4个原子。

3、物质熔沸点高低的判断

(1)不同类晶体:一般情况下,原子晶体离子晶体分子晶体

(2)同种类型晶体:构成晶体质点间的作用力大,则熔沸点高,反之则小。

①离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中离子半径小(或阴、阳离子半径之和越小的),键能越强的,熔、沸点就越高。如NaCl、NaBr、Nal;NaCl、KCl、RbCl等的熔、沸点依次降低。离子所带电荷大的熔点较高。如:MgO熔点高于NaCl。

②分子晶体:在组成结构均相似的分子晶体中,式量大的,分子间作用力就大,熔点也高。如:F2、Cl2、Br2、I2和HCl、HBr、HI等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。

③原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、沸点逐渐降低。

④金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如ⅢA的Al,ⅡA的Mg,IA的Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。

预览时标签不可点收录于合集#个上一篇下一篇

转载请注明:http://www.aierlanlan.com/grrz/205.html